全球高精度土地利用数据服务 全国作物类型空间分布数据服务 二级分类土地利用数据30m 高精度植被类型分布数据 全国城市功能区划分布数据 全国DEM高程数据服务 全国耕地数据空间分布服务 全国林地分类数据空间分布服务 全国草地类型分类数据空间分布服务 全国水体数据空间分布服务 全国建设用地数据空间分布服务 全国未利用地数据空间分布服务 地形、地貌、土壤理化性质数据服务 全国坡度坡向数据服务 一级分类土地利用数据30m
全国降水量空间分布数据集 全国气温空间分布数据集 太阳辐射量空间分布数据集 全国气象站点观测数据集 全国平均风速空间分布数据集 全国平均水汽压空间分布数据集 全国蒸散量空间分布数据集 全国日照时数空间分布数据集 全国相对湿度空间分布数据集 全国地表温度空间分布数据集 全国气候区划空间分布数据集 全国气象站点空间分布数据集 全国土壤湿度空间分布数据集 全国水文站点地表径流量空间分布数据集
土壤类型空间分布数据服务 土壤质地空间分布数据服务 土壤有机质空间分布数据服务 土壤酸碱度空间分布数据服务 土壤氮磷钾空间分布数据服务 土壤深度空间分布数据服务 土壤侵蚀强度空间分布数据服务 土壤含水量空间分布数据服务 土壤重金属含量空间分布数据服务 中国土壤阳离子交换量空间分布数据 中国土壤容重含量空间分布数据
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国人口密度数据服务 全国poi感兴趣点空间分布数据 全国医院空间分布数据服务 全国学校空间分布数据服务 全国居民点空间分布数据 全国旅游景区空间分布数据 全国机场空间分布数据 全国地铁线路站点空间分布数据 人口调查空间分布数据服务 社会经济统计年鉴数据 中国各省市统计年鉴 中国县级统计年鉴数据 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政区划空间分布数据服务
Landsat陆地资源卫星影像 高分二号遥感影像数据 高分一号遥感影像数据 Sentinel2哨兵2卫星影像 SPOT系列卫星遥感影像数据 WorldView卫星遥感影像数据 资源三号卫星遥感影像数据 GeoEye卫星遥感影像数据 NOAA/AVHRR卫星遥感影像 MODIS卫星遥感影像 环境小卫星 Rapideye快鸟卫星影像
高精度归一化植被指数NDVI空间分布数据 高精度净初级生产力NPP空间分布数据 LAI叶面积指数空间分布数据 全国地表温度LST空间分布数据 全国生态系统服务空间数据集 全国湿地沼泽分类空间分布数据集 全国陆地生态系统类型空间分布数据集 全国农田生产潜力数据集 全国GPP初级生产力数据 全国农田熟制空间分布数据集 中国植被区划数据 中国草地资源数据 全国月度NDVI归一化植被指数空间分布数据 月度净初级生产力NPP空间分布数据 全国年度NDVI归一化植被指数空间分布数据 年度净初级生产力NPP空间分布数据 增强型植被指数EVI空间分布数据 RVI比值植被指数空间分布数据
基于MODIS原始观测信号实现近地表大气颗粒物浓度遥感监测,可避免传统AOT-PM2.5关系模型中AOT反演过程中的误差传播。目前,已实现遥感反演大气颗粒物浓度多种空间分辨率产品(10KM、1KM、500m、250m)的算法,其中,PM2.5浓度1KM遥感反演系统已在江苏省环境监测总站业务化运行。
为满足环保部门业务化运行的需求,PM2.5遥感监测平台输入数据为MODIS 1B数据,其技术路线如图1所示。
图1 基于DOS-MODIS数据直收系统的大气颗粒物浓度遥感估算技术流程图
将经过云处理的MODIS观测信号通过奇异分解(SVD)的方法获得协方差矩阵,以之作为输入数据,考虑卫星-太阳几何角,以地面观测的PM2.5数据作为目标数据,同样将匹配得到的数据集L-M算法优化的人工神经网络模型进行PM2.5浓度反演模型。在构建模的过程中,发现MODIS的第五通道(1230-1250nm)观测数据经常会出现条带,不能直接用于PM2.5的反演计算,如图2所示。
图2 2013年1月28日MODIS Channel-5影像
本项目构建了基于LM-BP算法的3层神经元神经网络,其组成为输入层、隐藏层和输出层,每层都可以包含多个节点或神经元。输入层包括6个节点(输入参数):MODIS L1B数据的6个波段;输出层为PM2.5浓度。输入层与输出层之间被称为隐藏层,通过调整训练过程中的权重减小误差。神经网络的节点(神经元)之间通过输出信号和权重相联系,输出信号和权重通过一个正弦激活函数来调整。训练的过程是将输入数据反复输入神经网络,在数据每次通过时计算输出数据,并与目标数据相比得到一个误差,再将这个误差反馈给网络,通过网络的迭代训练调整权重值直至得到最小方差的最优权重,此时训练完成,所得网络即可根据新的输入数据进行估算或者预报。图3表示的是神经网络整个训练的流程图。
图3 多层神经网络模型估算大气颗粒物浓度流程度
对于神经网络的表现使用绝对误差百分比(APE)及实际值与估算值之间的相关性分析来衡量。
江苏省地面PM2.5监测数据(站点分布如图4所示)用来进行神经网络的训练、测试和验证,将这些数据随机分配到三个子集,训练(40%)和测试数据集(20%)和验证数据集(40%)。训练数据用于训练神经网络中隐含的多层感知器;测试数据用于测试各次迭代训练后学习过程的表现;验证数据集则是用来执行最终验证神经网络估计得到的大气颗粒物浓度。
图4 2013年3月8日MODIS遥感合成影像及江苏省PM2.5地面监测站点分布
图5显示的是引入了气象参数的PM2.5浓度反演算法的精度评价。两者相关系数R=0.82,其置信度95%的置信区间为:[0.5134,0.5312],[0.0379,0.0470],通过95%置信度检验。
图5 江苏省PM2.5遥感反演的验证结果
该系统为满足用户特定需求,支持自动成图、输出功能。
下图为系统成果图: